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Abstract-A hitherto unavailable analytical solution to the boundary-value problem of free
vibration of an anti-symmetric angle-ply laminated shear-fle~ibledoubly curved shell of rectangular
planform is presented. A novel solution methodology. based on a boundary-continuous double
Fourier series approach. is developed to solve the eigenvalue problems. involving five highly coupled
linear partial dltferential equations with constant coetlicients. resulting from Sanders' FSDT (first
order shear-deformation theory)-based formulation that also includes surface-parallel and rotatory
inertias. Numerical results presented in this study e~hibit. for the first time. a mode switch of
numerically ordered frequencies from transverse to surface-parallel modes with the change of
such geometric and material parameters as length-to-thickness ratio. radius-to-thkkness ratio and
lamination angle. Additionally. these results have heen utilized to validate the accuracy of available
CLT-based appro,irnate solutions. computed using the Galerkin approach.

I. INTRODUCTION

It is well estahlished that analysis of laminated curved panels fabricated with such advanced
composite materials as graphite/epoxy, boron/epoxy. graphite/PEEK etc.. arc complex due
to their inherent in-plane anisotropy and asymmetry of lamination, resulting in various
coupling etfects, e.g. bending stretching coupling, first studied by Ambartsumyan (1953).
Additional complexities arise because of transverse shear deformation. caused by low
transverse shear modulus-to-in-plane Young's modulus ratio and etfect of boundary con
straints.

Stavsky and Lowey (1971), Jones and Morgan (1975) and Greenberg and Stavsky
(19S0) have all obtained exact solutions [in the sense that an infinite set of linear algebraic
e4uations can be truncated to any desired degree of accuracy. according to Chia (1977);
scc also Chaudhuri and Abu-Arja (1991)] for the vibration and buckling problems of thin
cross-ply cylindrical shells. Soldatos and Tzivanidis (19~2) have presented exact solutions
to the vibration and buckling problems of cross-ply cylindrical panels. Jones and Morgan
(1975) and Soldatos and Tzivanidis (19~2) have used Donnell's kinematic relations. while
Stavsky and Lowey (1971) and Greenberg and Stavsky (1980) have utilized a Love-type
theory. Dong el al. (1962) have also developed a theory ofanisotropic thin shells. employing
Donnell's shell theory. and presented results for cross-ply laminates. All of the afore
mentioned exact solutions for thin shells (based on Kirchhotr- Love's hypothesis where
transverse shear deformations arc neglected) arc limited to: (I) cylindrical geometry.
(2) cross-ply laminations, and (3) special boundary conditions termed SS3 [under the
classification of Hoff and Rehfield (1965), which will be used in this paper henceforth].
Utilizing the approximate Galerkin approach. Soldatos (1982) has obtained solutions to
the free vibration problems of anti-symmetric angle-ply thin cylindrical panels with SS2
boundary conditions.

Gulati and Essenberg (1967), and Zukas and Vinson (1971) have studied the effects
of transverse shear deformation on the response of complete cylindrical shells. by intro
ducing the first-order shear deformation theory (FSDT). based on the so-called Mindlin
hypothesis. Dong and Tso (1972) have developed a FSDT-based theory for cross-ply shells
and presented exact solutions for free vibration of complete cylindrical shells. Sinha and
Rath (1976) have obtained exact solutions for transversely loaded circular cylindrical panels
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by incorporating the FSDT into Donnell's kinematic relations. Using four tracers to handle
four popular shell theories due to. namely-Sanders (1959). Love. Morley (1959) and
Donnell-Hsu et al. (1981) and Bert and Kumar (1982) have obtained FSDT-based exact
solutions to thermal stress and vibration problems. respectively. of bimodulus cross-ply
complete cylindrical shells and panels. Reddy (1984) has used Sanders' (1959) kinematic
relations and the FSDT for solving the problems of bending and vibration of shear-flexible
doubly curved panels. While he has been able to obtain exact solutions to the problems of
cross-ply doubly curved panels with SS3-type simply supported boundary conditions.
wherein the displacement functions have been expanded into double Fourier series. his
attempt at obtaining an exact solution to the problem of anti-symmetric angle-ply doubly
curved shells with SS2-type boundary conditions has not been crowned with success. because
of his ending up with 10 sets of linear algebraic equations in five sets of unknowns. leading
to his conclusion that "unlike plates. anti-symmetric angle-ply laminated shells with simply
supported boundary conditions do not admit exact solutions". The central issue here is the
well-posedness of the Fourier formulation. introduced through a Navier-type approach.
The first objective of the present study is to devise a method that will ensure the well
posedness of the formulation. so that the number ofequations becomes equal to the number
of unknown Fourier coefficients to furnish a unique complete solution. Study of the effects
of various geometric and material parameters on the computed natural frequencies of such
laminated panels. which arc extremely important design considerations. will comprise the
second objective of this investigation. Furthermore. a literature sean:h reveals that the effect
of surface-parallel inertia terms. resulting in mmk switch with the geometric and material
parameters. is yet to l1e investigated. which will form the third objective of this paper. In
addition. numerical results thus obtained will be compared to the available CLT-based
results. computed using the approximate Galerkin approach due to Soldatos (1982). which
will form the lin.1I objective of the pn:sent study.

::!. STATEMENT OF TilE PROBl.EM

Figure I shows a laminated Joubly eurveJ pand (open shell) of rectangular planform.
of total thickness Ii. x I anJ x! represent the directions of the lines of curvature of the middle
surl~lcc. while the x J-axis is a straight line perpendicular to the middle surface. R, (i = 1.2)
denotes the principal radii of curvature of the middle surface. The following set of simplify
ing assumptions is considered: (i) first-order shear deformation theory (FSDT) ; (ii) shallow
shell approximation-hi R I • hi R!« I; (iii) tmnsverse inextcnsibility; and (iv) neglect of
the geoJesic curvature.

The displacement lields. based on the above hypotheses. arc:

Fig. I. A douhly curved panel.
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( I )

in which II; (i = I. 2. 3) represents the components of displacement at a point X, (i = 1.1.3):
and II, denotes the same for the corresponding point at the midsurface. The strain dis
placement relations ofa doubly curved shell are (Reddy. 1984):

where

n II,
,:, =1111+-:. R,

n IIJ
f-: .. = It,.,+-;. ... R~

(3)

in which (/>, and (fl ~ arc the rotations of the reference surface (at X.1 = 0) about the x ~ and
x I co-ordinate axes. respectively. The equations of motion, based on Sanders' (1959) shell
theory. can be written as:

Q~ ( 2P~) ( 1P~)N c, 1- (' ,\,f • I + N, , + = PI + 11'11 + p, +-- A" II. ". -. - R ~ R ~ -. . R ~ '1' •.

with

N, N~
Q1,1 + Q~. ~ - R I - R ~ = PILI l,II

MI.I+M~,~-Q,= (p~+ ~)Ul.tl+(Pl)<Pl.tl

A/c",+A/~,~-Q~ = (p~+ ~:)II~,"+(Pl)<P~,"

I I(' = --- - --
R, R~

(4)

(Sa)

(5b)

where p'kl and N represent the density of the layer material and the total number oflayers,
n:spectively. N" N:, N h arc the surface-parallel stress resultants. while M" M:. M h are
moment resultants (stress couples), and Q, and Q~ are the transverse shear-stress resultants.
all per unit length. For an anti-symmetric angle-ply laminate.

(6)

The stress and moment reslllt:lnts an' th,'n cif'nn"c1 a<o:
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;'1, = A,,(Lle.1 +Lll.e) + B I6 cPI.I + Be6cP~.~

M t = Bt,(LI,.1 +lIl.e)+D 1I cPl.I +D,~cP~.~

Me = Be,(lI e.1 +lIl.e)+DlecPl.I+De~cPe.e

( III) .'Q I = A, < 111. I + cP I - Ii; K i

( III) ,
Q ,=A,~ 11,,+(1.,- -'- K~

• <.. 1'. R, . (7)

in which A". 8" and D" (i.j = 1.2.6) denote the extensional, Ilexural-extensional coupling.
and Ikxural rigidities. while A", i,j = 4.5, are the transverse shear rigidities (Jones, 1975).
K; and K~ arc the shear correction factors.

Sunslitutillll of eqlls (7) into eqns (5) yields the following five highly coupled second
order partial dilli:relllial elJuations:

(8b)

(B16 B~6)- - + - -I., I +AH-I." = PIIII/lR , R, '1'.. '1'.... (8c)
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SS2-type simply supported boundmy conditions are given by

II" = II \ = CPt == M" = Nt, = O. at the edges x" = constant; n == 1.2 (9)

where tl and t denote the normal and tangential directions to an edge and when n = I, t == 2
and vice versa.

3. TilE SOLUTION TECHNIQUE

Reddy (19H4) has sought to solve the boundary-value problem, represented byeqns
(H). (9), by assuming the displacement functions in the following form:

l I.

III == L L U",,, sin ():"'x I) cos (#"X1) T O~xl~a; o~ X1 ~ h
'" "
l l

111 == L L V",,, cos (X""~I) sin (PnX1) T o~ XI ~ a; o~;(1 ~ b
'" "
I. I.

u\ == L L W",,, sin (x",x I) sin (#nX1) T o~ XI ~ a; o~;(1 ~ b

'" n
l l

tPI == L L X",,, cos (X",XI) sin (PnX1) T O~xl~a; o~;(2 ~ b
m n
l I

tP1 == LLYmnsin(x",xl)cos(Pn.\'1)T o~ XI ~ a; o ~.\'1 ~ b ( 10)
m n

with T =c"·,t for free vibration. while a... and Pn are equal to nmla and mt/h. rcspectively.
Thc above assumed displaccment functions (10) completely satisfy thc geometric and

natuml boundary conditions as stipulated in eqns (9) in a manner similar to Navier's
approach. Hence. these functions are expected to be well behaved in the vicinity of an edge
and their substitution into thc differential equations should pose no difficulty (Hobson,
1926). By the introduction of eqns (10) into e.g. eqn (8a), Reddy (1984) has obtained
equations similar to
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L L sin (:xmx d cos ({1.x~)[ (G(i, I) - G(i. 2):x;, - G(i, 4){1;:- :xmf3. Um.
m= 1,,= I

- GU. 7):xmf3. Vm• +G(i, IO)f3 H·'m. - GU, 13):xmf3.Xm• + [GU, IS) - G(i, 6):x,~

~ '-

- GU. 8)f3;:- Y",.] + L L cos (:x.. X , ) sin ({1.x~)[ - G(i. 3):xmfJ. Um•
,"=1,,:1

+ :GU. 5) - GU. 6):x;, - GU. 8){1;:- Vm• +GU, 9):Xm Wm• + [GU. II) - GU, 12):x,~

- GU, 14)f3;: Xm• - GU, 7):xm f3. Ym.] = C, (II)

wherein i = I and

r. ,. { "P }
C = - L L sin (:xmx,) cos (fJ.x~htJz PI + ':"R z Um•

", = I fI= I I

Constants G(i. j) ; i = 1, ... ,5 ;j = I, ...• 18 are as presented in eqns (A I) of the Appendix.
On setting the coefficients of sin (:xmx d cos (fl"x z) and cos (:X",x,) sin (fl"x z), in eqn (II), to
zero, Reddy (1984) has obtained two sets of linear algebraic equations. Using the same
approach. the remaining four equations of eqns (8) furnish a further eight sets of linear
algehraic equations, tinally. yielding. in total. lOll/II equations in 511//1 unknowns. for
11/," = 1.2. J..... which has prompted Reddy (1984) to conclude that "unlike plates, anti
symmetric angle-ply laminated shells with simply supported boundary conditions do not
admit exact solutions".

The tirst step in <llleviating the dillkulty. encountered by Navier's approach employed
by Reddy (1984), comprises assuming that the displacement functions are in a form identical
10 eqns (10), e.'(cept Ihat the lower limits of Ihe cosine series include the 11/ or II = 0 terms.
which appear 10 have been excluded in Reddy's (1984) assumed solutions. Substitulion of
these modified displacement functions into the eqns (8a). (8e) will yield:

, ,
L L sin (::x", X , ) cos (fl"xz)[ {GU, I) - GU, 2)::x,;, - GU, 4)/1;} ::X",/I" U",,,

", .... 1" ... 1

- GU, 7) :X",/I" V",,, + GU, IO){I" W"", - GU, I 3)2.. /1" X",,, + {GU. 15) - GU, 6)::x,;,
,

-GU, 8)//,;: Y",,,] + L L cos (::x",xt> sin (f1"xz)[-GU,3):X",/f"U",,,
," ..... 1 " .... 1

+ :GU, 5) - GU, 6):x,;, - GU, 8)/1,;:- V"", +GU, 9):x", W",,, + {GU, II) - GU, 12):c,;,

-GU. 14)/1,;:- X",,, -GU, 7):c",/1" Y",,,]
,

+ L sin (:c",xt> [[GU, I) -GU, 2):c,;,)· U",o + {GU, 15) -GU, 16)/1,;} Y",")
", .. 1

r

+ Leos (//"xz)[{GU. 5) -GU,8)/f,n Vo" + {GU.II) -GU,14)/I,nXlI,,) = c,
" .. 1

for i = 1.5 and 0 < x, < a; 0 < Xz < h. (13)

The next and more important step is to expand the cos (::x", X I ) sin (fl"xz) and cos (fJ"xz)
functions in the form of Fourier series, as suggested by Green and Hearmon (1945) as
follows:

cos (:c",xdsin (fJ"xz) = L Lh""h",sin(y,x,)cos(l/I,xz) O<x,<a; O<xz<h (14a)
r_ t .1_11

and
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where

and

'-

cos(fJ,X~):::::: L sin(t/!,x~)
~"t 1

4m
It,,,, = ).

7t(rw -

o< x~ < h (l4b)

(ISa)

I"~ = ltr/a. t/J, = lts/h. (ISb)

Substituting the series expansions (14) into eqn (13) and equating to zero the coefficients
of sin (l",.\' I) cos ({I,x ~) and sin (l",X I) then furnishes. after a rearrangement.

'- Y:

-G(i. 3)1",//"X"" + :G(i,15)-G(i.16)1,~-G(i.18)/1';} Y",,,+ L L 1t,,,,II ..
r-I,_ I

,
+ :CU. II) - G(i. I~)~,} - GU. 14)'/tn X" - GU. 17)y,t/J, Y,,} +ho", L It..

-'1-1

:G(i. I) - G(i, 2)1,;,: U",o + {G(i. 15) - G(i. 16)1,;,} Y",o = c;

(16)

(17)

in which i = 1.5. while C, and c: (i = 1,., .• 5) are as delined by eqns (A2) and (A3).
respectively. in thc Appcndix.

The last step has eliminated the dillkulty encountered by Navier's approach employed
by Reddy (1984) to solve the problem under consideration. One can now obtain. setting
i = i. 5 into the cqns (16). (i7), two sets of linear algebraic equations corresponding to
cquations (8a). (8e). Similar opcrations on the rcmaining equations of eqns (8) will supply

- G(i. 3)'x",/I"U"", + :G(i, 5) - G(i. 6)7,;, - G(i, 8)f1,;} V"", +G(i, 9)1", W",n

"J'~ L..

+ :G(i. Ii) - GU. 12)1,;, - G(i, 14)/J,n X"" - G(i. 17)1,,,/J, Y",n + L L hrn,h,n
,.1 J- l

x {:G(i,I)-GU,2),'}-G(i,4)t/J;:'U,,-G(i. 7)y,t/J.v,,+G(i,IO)t/J,W,,-G(i, 13)y,t/!.X"

..
+ :G(i. 15) -G(i, 6h..~ -G(i, 8)t/Jn Y,,} +"0'1 L ",tt/[{ G(i, I) -G(i, 2h'}} U,n

,- 1

+{G(i.15)-G(i.16)j'})·j = (;, fori= 2.4 (18)

:G(i. 5) - G(i. 8)/I,;}J'ott + fC(i. II) - G(i, 14)/1';} Xu" = C; in which i = 2,4 (19)

and
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T.- r..

-G(3.9)2'"'\:"m"-G(3.12)p"Ym"+ L L h,mh,":G(3.I)",C"+G(3.~)l/JY,,
r= I f= I

+ G(3. 7),',"', W" +G(3. 10)",.x" +G(3. II ),', Y,,: = C,. (20)

Finally. for the free vibration problem under investigation. the above procedure has yielded
a 5mn +2m + 2n eigensystem (homogeneous linear algebraic eq uations in terms of as many
unknowns). in which case the Fourier coefficients need not be determined explicitly. The
eigenvalues and eigenvectors are computed by calling the software IMSL as a subroutine.
The convergence characteristics of the Fourier series solution. which is an important issue
in the case of static deformation problem. has been investigated by Kabir and Chaudhuri
(1991) for the case of clamped cross-ply plate. Extension of the same to the case of a
laminated doubly curved panel. the details of which are available in Kabir (1990). will be
published in a follow-up paper.

4. RESULTS AND DISCUSSIONS

The following two examples-(i) cylindrical and (ii) spheril:al panels of square
planform. whil:h 'Ire spel:ial cases of doubly l:urved panels~-will serw to illustrate the
validity of the analytil:al prol:edure of the preceding sel:tion. Two examples of anti-sym
metril: angle-ply lamination -(01 - 0) and (01 - 0101 - O)--will be l:onsidered. Material
properties arc assumed identil:al to those of Soldatos (lllS2) :

wherein E 1 and E1 arc the Young's moduli in the direl:tions parallel and transverse to the
fibers. respel:tively. G 11 is the surface-parallel shear modulus. while (j I \ and G1\ arc the
transverse shear moduli and \'11 is the major Poisson's ratio. The shear correction factors
wnsidered, K; = K~ = 5/6. arc fairly standard. Normalized frequenl:ies arc defined as

(21)

Example (i) : Cylindrical pal/els of square plal/jimn
This example is selected for the purpose of verifying the convergence and also because

CLT-based numerical results due to Soldatos (1982). computed using the approximate
Galerkin's procedure. are available.

Table I shows the convergence of the fundamental frequency, WI' which corresponds
to the mode shape Ill( 1.1). of a relatively nat (Ria = 92.1403) and moderately-thick

Tahle I. Companson of convergence of lhe normalized
fundamenlal fr~'<Iuency of a 45 / - 45 cylindric;/I

p;lJlclt

11='"

2
3
4
5
6
7

Soldalos (I 'JK2)

27.120
26.354
26.29!(
26.171
26.166

Presenl solulion

27.01'J
27.262
27.375
27.420
27.415
27.430
27.440

tE II E,=40: G".E,=G"iE,=0.5: G"jE,=
0.6; I'" = 0.25: Rei = 'J2.1403: (/ = h.
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Fig. 2. Convergence of normalized (al first and second. (bl third and fourth numerically ordered
frequencies.

:!5

({iii, = 20) 45 / - 45 cylindrical panel. Soldatos (1982). in his CLT-based study. has shown
convergence up to m, II = 5, while up to m, II = 7 terms have been included in the present
fSDT-based convergence study. R,lpid convergence has been observed here. with resulls
due to m =" = I being within less than 1.5% (error) of the converged solution due to
m = II = 7. The approximate solution due to Soldatos (19X2) is in close agreemcnt with the
present solution. the minor dilTerence between the two solutions heing attributable to
Soldatos' use of the CLT and Gah.:rkin's approach. The convergence of the first four
natural frequencies is illustrated in Figs 2(a). (b) for a moderately-deep (R/a = 5.73)
and moderately-thick (a/It = 20) 45"/ -45 panel. Rapid convergence of the fundamental
frequency for the latter-type panel confirms the same trend. demonstrated by Table I, in
the case of the former. The same trend continues for the second, third and fourth natural
frequencies, wherein m = " = 2 terms appear to be adequate for numerical convergence,
which renders the present analytical procedure also numerically emdent. Variation of the
fundamental frequencies (wd. for moderately-thick (a/It = 20) and thick (a/It = 5) anti
symmetric angle-ply moderately-deep (R/a = 5.73) panels. as functions oflamination angk,
0, are presented in Figs 3(a) and 3(b), respectively. E,ICh case considers two laminations
two-hlyer (0/ -0) and four-layer (0/ - 0/0/ - U). In the case of the thick four-layer
(0/ -0/0/ -0) angle-ply panel, with a/It = 5, the maximum frequency is found to occur at
a 0 in the neighborhood of 60 , the minimum being at 0 = 0'. For a/It = 20 [Fig. 3(a»), WI

assumes its maximum and minimum values at 0 = 90 and 0 = 0 , respectively. The two
layer anti-symmetric angk-ply panel assumes its minimum W I ncar 0 = 15 . the maximum
being at 0 = 90 for both the thickness ranges-a/It = 5 and 20. Figure 4 shows the
fundamental frequencies, ill I, of two-layer (0/ - 0) and four-layer (0/ - 0/0/ - 0) moderately
thick (a/It = 20) and deep (R/a = 1.30) panels as functions of the lamination angle, O. The
maximum frequency in both the cases occurs ncar 0 = 82', while minimum values are
assumed at different angles of lamination, with those for the two-layer and four-layer panels
being close to 5· and at 20', respectively. It is interesting to observe that for () ~ 80'
(approximate) a mode switch occurs, with the result that the fundamental frequency now
corresponds to a surface-parallel mode. III( 1.11' instead of the usual transverse mode, 11)( 1.11'

Example (ii): Sphaical panels of sqllare planform
The second example considered is that of the simplest type of doubly curved panels,

i.e. a spherical panel (wherein the geodesic curvature has been neglected), with the purpose

SAS 28:1-C:
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4Or---------------,

30

Cylindrical Panal
a=b; Ria = 5.n; 8th =20

Q,..jj;91-<l

10 '--_~ ~_~_ _::::__-=-=

o 15 30 45 60 75 90
Lamination Angle e

(3)

U)(I.I)

12

"',
11

u)(1.11

10

Lamlnallon angle 9
(Ill

Fi~..'. Variation of norl1l.dized fundamental frequency w,th bmination an~1e l(lr (a) moderately
thick and (Ill thid. mo,leralely·deep <:ylindrical p'1I1e1S.

of investigating the influence of the lamination angle. II. curvature and thickness on the
natural frel\uem:ies.

Figures 5(a) and 5(b) exhibit the variation of the fundamental frel\uen!':y. (1)1. with
respect to the lamination angle. O. for moderately·thick (a/II = 20) ,Ind thick (alii = 5)
pands. respectively. with Rill = 5.73. [n contrast to its cylindrical pand counterparts (Figs

Cylindrical Panel
I.

a=b; Ria = 1.30; 81h =20 "
90 "

""I,
ul(l.1) "

80 '\
u3(1.1) ..

70

60

"',
50

40

30

20
0 15 30 45 60 75 90

Lamlnallon angle 9

Fig. 4. Variatiun of Ihe normali/.ed fund'lInental frequency with laminatiun 'Ingle uf moderalely
thick deep cyhndn<:al panels.



Frcc vibration of doubly curved panels

32 r--------------,

91~10I~./

••.•• uJII.1l

.......•.
'.

00, ~." •••• Spherlca' Panel ••••• ~I
28 "' a = b; Ria = 5.73; alh = 20 I

I
'- /81-8 ...... ·-·-·----·-··/

uJII.\)
26 L------:~-~--:~__:=__;:;;io 15 30 45 60 75 90

lamination Angle 9
(al

30

Spherical Panel
a = b; R/a = 5.73; alh = 5

" .

13

"',
12

11 .'..'

_•••• _._._~~II.1)

91-4J

~ ..-

10L.._~_~_~ ~_-'

o 15 30 45 60 75 90

lamination anQle 9
(bl

Fi~. 5. Variation of IHlrmali/cd fundamcntal frcqucncy wllh !;Inllnation an~1c for (a) nHldcrately
thick and (1)) thick. modcrately·dcl'p sphcrical panels.

3a. 30). symmetry aoout II = 45 of these plots (Figs 5a. 50) is self-evident. Two-layer
0,' - O. moderately-thil.:k (ajli = 20) pancls attain maximum values at 0 and 90 . while four
layer. II -11/0/ -II. moderately-thil.:k (a/Ii = 20) and both types of thil.:k (all = 5) panels
assume their maximum fundamental fn:4uenl.:Y v;dues at II = 45 . Minimum values of WI.

for a OJ -IJ pand with a/Ii = 5. ol.:l.:ur close to IJ = 10 and Xli. while their moderately-thil.:k
(alii = 20) counterparts assume their minima at 21 and 69 . In the I.:ase of four-layer
(11/ -1Ii11! -0) panels. these minima ol.:l.:ur at 0 and 90 . regardless of the shell thil.:kness
under consideration.

The inl1uenl.:e of the I.:urv;tture on the first four natural fre4uenl.:ies ofmoderately-thkk
(a'll = 10) two-layer (45/ -45) and four-layer (45/ -45/45 -45) pands is shown in
Figs 6 and 7. The plot of (J) I versus Ria (Fig. 6) demonstrates that for both 45/ - 45 ' and

22 Spherlca' Panel
a=b; 8lh=10

20 uJ(1.I1

45/-45/45/-45

18
----i

CJJ
I
16

14

-~451-45
12

0.0 10 20 30 40 1()8

R/a

Fig. (" Variation of the normali7.Cd fundamental frequency wilh Ria ratio. for moderately-thick
spherical panels,
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32 1lI. (45/-45) a 00, (~51-45/~5/-45)

28 ~"'"
---------

24
Spherical Panel
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loa40302010

20~_~__~__~__---<
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Fig. 7. Variation of the normalizd higher numem:ally·ordered frequencies with R a ratio for
modcrately-thick spherical panels.
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Fig. 11. V"ri"tion llf nlll'm"lized fund"lnent,,' frcquem:y with a/h r"tio fllr moJer"ldy·deep spheric,,'
p"nds.
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Fig. 9. Vari"tion of norm"lizeJ second "nJ third numeric"lIy ordcred frequcncles with ah ratio for
moder"tcly-dcep spherical p"ncls.
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Fig. 10. V"ri'llion of thc m'rm"lilcd fourth numerically ordercd fre4uency with ul" r"tio for
lllodcr"lc1y-dccp ~pheric,,1 p"nc1s.
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Fig. II. Variation or normalized fund"l11cnt"t frc4ucncy with U!" mtio for vcry shallow sphcric,,1
p"nds.

45/ -45 '/45/ -45' laminates, the effect of shell curvature on WI is not noticeable for
R/a ~ 30 approximately. In the case of 45/ -45' laminates. W~ and W). which correspond
to the UI(I.~1 and 113(~,11 modes. respectively. are almost identical (Fig. 7). This trend is also
observed in the case of W 3 and W4 of 45/ - 45"/45'/ -45" laminates, which correspond to
the UI(UI and U3(~.I) modes. respectively. Further. it is interesting to observe a switch to a
surf'lce-parallel mode. 111(1,11' which corresponds to the numerical frequencies. W4. for
45/ -45' and W~ of 45 '/ -45 '/45 '/ -45' laminates. which incidentally assume almost
identical values for all R/a ratios.

The effect of thickness on the first four natural frequencies of two-layer. 45'/ -45'.
and four-layer. 45'/ -45 '/45 '/ -45', moderately-deep panels (Ria = 5) is presented in Figs
8 -1 O. Figure 9 exhibits a switch from out-of-pl'lne or transverse mode. 1I.1( I.~l' to a surface
parallel mode. 1111 I, n. in the case of the second (numerical) natural frequency. (J)2. for both
45/-45' and 45'/-45'/45'/-45 laminates. Figure 9 also shows that (JJ2 and WJ of
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Fig. 12. V,mation Ilf nprrllaJizcd sl'wnd .lOd thIrd nUOll"rIl:ally Ordl"rl'd frcqul"nl"il"s wIth "ill ratio
for very shallow spheril:al pands.
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Fig. 13. Variation of the norl11alizell fourth numeril:ally ordereJ frequenl:y with a/II ratio for very
shallow srheril:al pands.

45/-45' merge together for a(1I ~ 10 (approximately), while w~ and WI of
45 'I -45 '/45 'I -45' docs the same fM a/II ~ 20. Figure 10 shows the variation of the
fourth numerical frequency, (I) 4 , with respect to the alII ratio. for both 45 'I -45' and
45 1- 45 '/45 - 45' laminates, wherein a switch of mode with the change in thickness is
self-evident. Simil<tr trends arc also observed in the case of flatter panels (Figs 11-13). These
plots further demonstrate that for relatively flat panels. nondimensionalized frequencies.
w, as expected. tend to become independent of the increase of a/II ratio, with the lower
frequencies attaining this status faster than the higher ones.

5. CONCLUSIONS

A heretofore unavailable analytical solution to the problem of free vibration ofa finite
dimensional anti-symmetric angle-rly shear-flexible doubly curved shell of rectangular
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planform is presented. Sanders' kinematic relations. extended to include the first-order shear
deformation through the laminate thicknesss. and surface-parallel and rotatory inertias.
are utilized in the formulation. A novel solution methodology. based on a boundary
continuous double Fourier series approach. is developed to solve the eigenvalue problems.
involving five highly coupled linear partial differential equations with constant coefficients.
previously thought to be incapable of admitting an "exact" solution. Numerical results
presented here demonstrate fast convergence. and also testify to the accuracy and efficiency
of the method developed. Furthermore. these results exhibit. for the first time. a mode
switch of numerically ordered frequencies from transverse to surface-parallel modes with
the change of such geometric and material parameters as the length-to-thickness ratio.
radius-to-thickness ratio and lamination angle. which has profound implications for the
role of these parameters on the failure modes of the type of composite panels under
investigation. In addition. these results have been utilized to validate the accuracy of
avail'lble CLT-based solutions. computed by using the approximate Galerkin approach.
These solutions should serve as baselines for future comparison of results. obtained by such
popular approximate numerical methods as finite elements and finite difference.
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through il graduate rese.lrch fellowship. The authors als,. wish t,. thank Prof. Stecle. Editor. and thc reviewcrs
f,.r thcir helpful comments ,'n an earlier versl\'n of the manuscript.

REFERENCES

Amhartsumayan. S. A. (195JI. Calculatil1n Ill' laminiltcd iSl1trl1pic shells. 1:1'. AI.:",/. Na,,1.: 04",/('11. SSlt S.'r. F;: .
.\lalc",. E,I,,". '{",1m. Newl.: 6. 15.

Hcrt. (', W. amI Kumar. M. (19~2). V,hralil111 of cyhndrical shells of himodulus composite materials. J. S"l/f,,1
l"I"r. KI. 107 121.

Chaudhuri. R. A. and Ahu-Arja. K. R. (1991). Static anitlysis of moderately-thick linite antisymmetrie angle-ply
cyhndrical panels and shells. 111I. J. Solid, Slfllet"",., 2K. I 15.

Chl<l. (', Y. (1977). N,,"lill"ar .·II",/n;.' of I'lale.'. McGraw-llill. New Ynrk.
Dong. S. H.. "isler. K. and Taylor, R. C. (1l)(,21. On the theory of laminaled anisotropic shells and plates. J.

Aero. Sci. 29. l)(,l) 1)75.
Dong. S. H. illld Tso. F. K. W. (1lJ7~). On a laminated nrthotropic shell thenry ineluding transverse shear

defurmation. ,.ISME J. ,.11'1'1. Mech. 39. (()9 I IOl)(,.
Green. A. E. and lIearmon. R. F. S. (19451. The buckling of nat rectangular plywood plates. Phil. Ma!/. 36.659

6M7.
Greenhcrg. J. B. and Slavsky. Y. (19MU). Uuckling illld vihration of Mtholropic compusite cylindrical shells. A..la

.\1<·,·h. 36. 15 29.
Gulati. S. T. and Essenberg. F. (1')67). Elrects uf anisotropy in a:\isymmetric cylindrical shells. tlSM E J. Appl.

.\/t'ch. .34.650 666.
lIobsun. E. W. (1926). n,,, ,(h"",.\' 0( F""et;,,",, ota Real l'ar;ah/,' alld Ih" Th"ory "I fill/rit-r S.-r;".'. Vul. II. ~nd

edn. Cambndge University Press. U.K.
Holr. N. J. and Rehlicld. L. W. (1965). Buckling uf a.\ially cum pressed circular eylindricitl shells at stresses smaller

than the classical critic;t1 value. ,.1.'1.\1£ J. 041'1'1. M"ch. 32. 54~546.
Hsu. Y. S.. Reddy. J. N. and Bert. C. W. (I 9111). Thermoelasticity of cylindrical shells lilminated of bimodulus

cumposite materiitls. 1. Th",,,,. SIr. 4. 155 177.
Jones. R. M. (1975). AI"c/wl/;n or (''''''I'm;/(' Ma/(·r;al.\·. Scripta. W;lShington.
Jones. R. M. illld Murgan. H. S. ( 1975). Buckling and vibratioll of cross-ply laminated circular cylindrical shells.

AIAA JI 13. 664671.
Kabir. H. R. H. (1990). Static and dynamic analysis uf laminated finite doubly curved shells. Ph.D. Dissertation.

University of Utah.
Kabir,/I. R. /1. and Chaudhuri. R. A. (1991). A generalil.ed Navier's appro'lch fur sulution ofelamped moderately

thick eruss-ply p\;ltes. (',,11I1''''''' SlrUl'l. (in pressl.
Morely. L. S. D. (1959). An improvement of Donnell's apprmimiltion of thin-walled circular cylinders. Q. J.

.\1<'..h. Al'pl Jlal!t.\·. K. l!9 99.
Reddy. 1. N. (19M4). E:\acl solutiuns of moderately thick lilminated shells. J. EI/.Q,,-q Mel'h. ASCE I/O. 794 ·Il09.
Sanders. J. L. (1959). An improved lirst·appro:\imation theory for thin shells. NASA Technical Report. R-24.
Sinh:l. P. K. and Rath. A. K. (1976). Transverse hcnding of cross-ply laminated cireulilr cylindrical plates. J.

.\I('ch. EII.qnq Sci. /8. 53 56.
Soldiltos. K. P. (19M2). Frce vibrations of antisymmetrie angle-ply laminated circular cylindrical pands. Q. J.

,\fc·..h. ,.11'1'1. M<llh. 35. ~07 ~2 I.
Suldatos. K. P. and Tl.ivanidis. G. J. (19M~). Buckling and vibration of cross-ply Iilminatcd circular cylindrical

panels. J. App/. .\I<1Ih.•. 1'11.1'.'. (Z_I.\II') 33. ~JO ·2."1.
Sta\sky. Y. illld Lowey. R. (1971). On vibrations of heterogeneous orthotropie cylindrical shells. J. S"UlIeI V;hr.

15. 235- ~56.
Zukas. J. A. and Vinsl.n. J. R. (19711. Laminated transversely isotropic cylindrical shells. ASME J. Appl. Ml'cll.

3K. 400 ·407.



H. R. H. KASIR and R. A. CHAL'I}HIRI

APPENDIX

The. non-zcn:> constants. GU. j) with i = 1-5 and j = I-1M. arc as given hel",,'

A" _
G(I.I)=- R;: G(I.~)=A,,: G(1.3)=~cB,,: G(1.4)=A,,+c-D,,:

G(1.6) = -,'8,.: G(1. 7) = A,:+A •• -c:D,,; G(1.8) = cB:.:

A" A,. A" cB,. cB .•
G(I.9) = R, .~ + ,-'~. GO.IU) = -~ +--=

R: R,' R, R:

.-4, ..
G(I.II)=.~: GO.l3)=~B,,: G(1.14)="D•• : G(1.16)=B".:

GO.17) = cD... : GO.lll) = B:.: G(~.~) = G(1.6); Ge.3) = GO. 7):

G(~.I~) = B,.:

cB,. cB,.. A,. ,./.. Au
G(~. 9) = -R~-- - 7(" G(~. 10) = 'R~' + k':' + R',<

G(~.13) = -cD,.• : G(~.14) = B,.:

,./"
G(~.15) =R;' (i(~.16) = cD... : G(~. 17) = ~B",: G(~.IM) = B,::

. , ~ .-I,,~,., " .-I" .
(, (... ) = - R; R , R, 1<!' (;(J. (,) = l.,:

G(J. 10) = G(3. II) = G(J. ~)c:

G(J. .1) = - (i0.~).
A"

(iL'. I) = -
R,

A'I
(;('4)=---. R:

(;(I.I~) = .-I".

A" A".
R, R, .

.·1,: ,·f::.

R, R:'

(;(J. 'I) -= .·1,,:

.-1"
(;(4. I) = :

R,

e8
( '(' ') = - -_,., .. ~ R,

(;(4..') '" ~IJ,.: (,"(4.4) '" cO",.: (/(4. (,) '" 8".:

(;(4. 7) ~ -eO",.: (i(4.X)·, IJ,.: (;(4.'1) '" -A,,:

(;(4.11) -.-1,,: (;(4.12)c'/),,: (;(4.14).=0•• : (i(4.17) ",D,,+D•• :

(;( 5.2) 1/ ,. : (i(5 • .1) = cO•• : (;(5.4) = IJ,.:

(;(5.7) = 21J: .. : (;(5.9) = -(j(.1.IO): 0'(5.10) = -.·1,,: (;(5. D) = f) .. +f),,:

G(5.15) = -A,,: G(5.1(,) -= D•• : (;(5. IX) = 0"

.. [( '1' ) " ( 1') ]C,= L LC"" I',+-/<: U", .. +L Lfr.... fr'" I"+R' X" (II'
... _ I ,,_ I I r_1 ,~tJ I

" [( '1' ) .. ( 1') ]C, = L L e"" 1', + ~---.' v"'.. + L L fr...,!,,,, 1':+ -l t'" (I):
",_1.,_1 . ,_I._U -

, ,
C, = - L L c.. ··, 1',(11'

HI_I It-I

" [" (I') ]C. '" - L L c"" L L fr".fr," 1'1+ R' +P,X"," (I)'
m_IJI_1 ,_0,_1 I

,. [" (I') ]C, = - L L e"" L L fr,,,,fr," p1+·il V","+(/'dt'... (I)'
",_1,,_1 r_I._fJ I

" '"" () ~P:):.-( , = - L c I ,+ R' (II l.' ,..0

",-I I

. 'h'''( 21':), 'C:=-Lc P'+R-,(I)~o.
It-I •

(", = ()

c~ '" - L p,(II'Y,,".- ,
C', -= - I 1',(1" L",-

,"_I

(A I)

(A~)

(A.1)


